skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santoro, Alyson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stedman, Kenneth M (Ed.)
    ABSTRACT We report the metagenome-assembled genome of an ammonia-oxidizing archaeon that is closely related toNitrosopumilus adriaticusNF5 but shows distinct genomic features compared to strain NF5. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  2. Biogeochemical cycles constitute Earth’s life support system and distinguish our planet from others in this solar system. Microorganisms are the primary drivers of these cycles. Understanding the controls on marine microbial dynamics and how microbes will respond to environmental change is essential for building and assessing model-based forecasts and generating robust projections of climate change impacts on ocean productivity and biogeochemical cycles. An international community effort has been underway to create a global-scale marine microbial biogeochemistry research program to tackle gaps in this understanding. The BioGeoSCAPES: Ocean Metabolism and Nutrient Cycles on a Changing Planet program will identify and quantify how marine microbes adjust to a changing climate and assess the consequences for global biogeochemical cycles. This article summarizes the ongoing efforts to launch BioGeoSCAPES. 
    more » « less
  3. Abstract Microbial chemoautotroph-heterotroph interactions may play a pivotal role in the cycling of carbon in the deep ocean, reminiscent of phytoplankton-heterotroph associations in surface waters. Nitrifiers are the most abundant chemoautotrophs in the global ocean, yet very little is known about nitrifier metabolite production, release, and transfer to heterotrophic microbial communities. To elucidate which organic compounds are released by nitrifiers and potentially available to heterotrophs, we characterized the exo- and endometabolomes of the ammonia-oxidizing archaeon Nitrosopumilus adriaticus CCS1 and the nitrite-oxidizing bacterium Nitrospina gracilis Nb-211. Nitrifier endometabolome composition was not a good predictor of exometabolite availability, indicating that metabolites were predominately released by mechanisms other than cell death/lysis. Although both nitrifiers released labile organic compounds, N. adriaticus preferentially released amino acids, particularly glycine, suggesting that its cell membranes might be more permeable to small, hydrophobic amino acids. We further initiated co-culture systems between each nitrifier and a heterotrophic alphaproteobacterium, and compared exometabolite and transcript patterns of nitrifiers grown axenically to those in co-culture. In particular, B vitamins exhibited dynamic production and consumption patterns in nitrifier-heterotroph co-cultures. We observed an increased production of vitamin B2 and the vitamin B12 lower ligand dimethylbenzimidazole by N. adriaticus and N. gracilis, respectively. In contrast, the heterotroph likely produced vitamin B5 in co-culture with both nitrifiers and consumed the vitamin B7 precursor dethiobiotin when grown with N. gracilis. Our results indicate that B vitamins and their precursors could play a particularly important role in governing specific metabolic interactions between nitrifiers and heterotrophic microbes in the ocean. 
    more » « less
  4. Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA’s gene content. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  5. Abstract Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export. 
    more » « less
  6. Stewart, Frank J. (Ed.)
    ABSTRACT The complete genome sequences of two chemoautotrophic nitrite-oxidizing bacteria of the genus Nitrospina are reported. Nitrospina gracilis strain Nb-211 was isolated from the Atlantic Ocean, and Nitrospina sp. strain Nb-3 was isolated from the Pacific Ocean. We report two highly similar ~3.07-Mbp genome sequences that differ by the presence of ferric iron chelator (siderophore) biosynthesis genes. 
    more » « less
  7. Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO 2 , NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change. 
    more » « less
  8. Abstract. As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH4+–NH3) – into the oxidized species nitrite (NO2-) and nitrate (NO3-). In the ocean, these processes are mainly performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N2O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N2O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.8355912 (Tang et al., 2023). 
    more » « less
  9. ABSTRACT The Thaumarchaeota is a diverse archaeal phylum comprising numerous lineages that play key roles in global biogeochemical cycling, particularly in the ocean. To date, all genomically characterized marine thaumarchaea are reported to be chemolithoautotrophic ammonia oxidizers. In this study, we report a group of putatively heterotrophic marine thaumarchaea (HMT) with small genome sizes that is globally abundant in the mesopelagic, apparently lacking the ability to oxidize ammonia. We assembled five HMT genomes from metagenomic data and show that they form a deeply branching sister lineage to the ammonia-oxidizing archaea (AOA). We identify this group in metagenomes from mesopelagic waters in all major ocean basins, with abundances reaching up to 6% of that of AOA. Surprisingly, we predict the HMT have small genomes of ∼1 Mbp, and our ancestral state reconstruction indicates this lineage has undergone substantial genome reduction compared to other related archaea. The genomic repertoire of HMT indicates a versatile metabolism for aerobic chemoorganoheterotrophy that includes a divergent form III-a RuBisCO, a 2M respiratory complex I that has been hypothesized to increase energetic efficiency, and a three-subunit heme-copper oxidase complex IV that is absent from AOA. We also identify 21 pyrroloquinoline quinone (PQQ)-dependent dehydrogenases that are predicted to supply reducing equivalents to the electron transport chain and are among the most highly expressed HMT genes, suggesting these enzymes play an important role in the physiology of this group. Our results suggest that heterotrophic members of the Thaumarchaeota are widespread in the ocean and potentially play key roles in global chemical transformations. IMPORTANCE It has been known for many years that marine Thaumarchaeota are abundant constituents of dark ocean microbial communities, where their ability to couple ammonia oxidation and carbon fixation plays a critical role in nutrient dynamics. In this study, we describe an abundant group of putatively heterotrophic marine Thaumarchaeota (HMT) in the ocean with physiology distinct from those of their ammonia-oxidizing relatives. HMT lack the ability to oxidize ammonia and fix carbon via the 3-hydroxypropionate/4-hydroxybutyrate pathway but instead encode a form III-a RuBisCO and diverse PQQ-dependent dehydrogenases that are likely used to conserve energy in the dark ocean. Our work expands the scope of known diversity of Thaumarchaeota in the ocean and provides important insight into a widespread marine lineage. 
    more » « less